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Abstract

Currently, using advanced AI models requires giving up privacy of
users’ data and limits how models can be used. Meanwhile, open source
models do not yet have a sustainable business model. We present a decen-
tralized system that enables the creation and deployment of large language
models and Al agents that are both open-source and monetizable; private
and verifiable while open for all to use; and preserve users’ ownership of
their data and assets while enabling customized experiences that improve
their well-being.

Introduction

Large language models are becoming more important in the everyday lives of
millions of people and for an ever-increasing number of use cases. Many of these
use cases require users to share their personal data with the service that runs the
model. For proprietary models such as ChatGPT, that means sharing personal
data with the model creator. For open-source models, this means sharing the
data with the service that hosts the model. For smaller models, users may opt
to host models locally, but for frontier models, this is not viable for the majority
of users.

At the same time, for a model developer, there are two ways to publish a
model: to keep the weights private and publish it as an API endpoint, or to
publish the weights. In the latter case, monetizing the model becomes prob-
lematic because users can choose to run the model locally, or can use it using
third-party providers for hosting and avoid paying the developer.

In this paper, we present a decentralized machine learning cloud that allows
model developers to publish their models in such a way that anyone can get a
usable deployment of the model without permission from the developer, but no
one can use the model without paying the developer, and all the deployments
of the model are such that neither model hosts nor the model developer can see
the data of the users using the model, which includes inputs, outputs, and any
intermediate values.

The paper is structured by iteratively building the components of this de-
centralized machine learning cloud, including:



e Private inference. The ability for a user to use a remotely hosted machine
learning model in a way that makes the user confident that neither the
host nor the model supplier can see the user’s data.

e Verifiable open-source models. A pair of source code and model weights
such that the user of the weights can be certain that the weights are, in
fact, produced by the code provided.

e Decentralized monetizable models. An approach to distributing models
such that anyone can get a usable deployment of the model from any
other participant of the decentralized network, and yet no one can use the
model without paying the model supplier.

e Community-owned models. An approach to training models in which a
group of participants that do not necessarily trust each other pools re-
sources together, and then train a model in such a way that it can be
deployed to the decentralized network that does not allow usage without
payment, and the payments are distributed back to the participants that
funded the model training.

1 Trusted Execution Environments

Modern processors support a concept of Trusted Execution Environments
(TEEs), such as Intel TDX, AMD SEV and ARM CCA. TEEs allow one entity
(Alice) to run some code on the machine of another entity (Bob) in such a way
that (a) Alice is certain that the computation carried out is in fact the compu-
tation she expected to be carried out, and (b) Bob cannot see any data passed
by Alice to the computation, nor the results of the computation.

Starting with H100s, NVIDIA GPUs also support Trusted Execution En-
vironment, as long as the CPU on the machine supports TEEs (such as Gen5
Intel processors). These also allow machine learning workloads that move data
in and out of GPUs to be executed in such a way that the owner of the hardware
cannot eavesdrop on the user data. Independent benchmarks [I] show that the
overhead of running inside the TEEs is less than 7%. It is expected to be even
lower on the Blackwell GPUs.

In this document, we utilize TEEs via the following abstraction: we craft a
special open source confidential virtual machine (CVM) that the hardware owner
(Bob) deploys on their TEE-enabled hardware, which allows users (Alice) to
establish a TLS connection to the CVM in a way that Alice can in fact be certain
that the other end of the connection is served by CVM that runs inside a TEE,
and that there’s no man in the middle that can eavesdrop on the connection. In
other words, Alice is certain that only the code of the CVM and no other code
participates in handling her requests, and that neither Bob, nor the creators of
the CVM, nor any other entity can see the data being sent or received by Alice,
nor, for that matter, any intermediate results of the computation.



The CVM then allows Alice to spin up an arbitrary Docker container inside
the CVM, and run it.

It further allows a third party (Charlie) to prepare and publish a Docker
container with some computation spin up a CVM on Bob’s hardware, deploy
her Docker container there, and then have Alice establish a TLS connection
with the CVM and be certain that the service she is interfacing with is in fact
operated by the Docker container published by Charlie.

It is worth mentioning that TEESs rely on the hardware manufacturers not to
be malicious. Code running inside an Intel TDX enclave could be compromised
if Intel is compromised, and similarly, the code running inside H100 TEEs could
be compromised if NVIDIA is compromised.

2 Private Inference

Inference can be considered as the most direct application of TEE technology
to machine learning use cases. While quantization and other techniques made it
possible to run many models locally, it is still the case that specialized, expensive
hardware is necessary to serve the best models at fast speeds, and that users of
such models need to use models hosted outside of their local environments.

When users interface with systems deployed by centralized entities, such as
OpenAl or Anthropic, they voluntarily give away all their data to such central-
ized entities. However, after decades of conditioning, users of the modern web
are generally content to share their data with big centralized players, hoping
that such centralized players have good security measures in place and assum-
ing that the probability of the data being misused, leaked, or otherwise used
against the user is low.

Now consider a decentralized inference solution. This would naturally con-
sist of hardware provided by various entities, and any computation carried out
on such hardware would be seen by the hardware providers. In contrast to
the situation above with large centralized players, users have no reason to be-
lieve that hardware providers will not intentionally or unintentionally store and
misuse their data.

There are three general approaches to getting around this problem:

1. Multi-party computation (MPC). The general idea is to serve the model in
such a way that the participation of multiple parties is necessary to carry
out the computation, and no user data can be recovered unless some per-
centage of the parties collude. For the purposes of private computation we
do not consider MPC alone to be a sufficient measure, since the collusion
of the parties is undetectable, and the parties have no incentive not to
collude. MPC also comes with expensive computational overhead, e.g. 5
minutes per token for a 7B parameter model as described in ([2]).

2. Homomorphic encryption. A homomorphic encryption scheme is an en-
cryption scheme that allows carrying out computation on top of encrypted



data in such a way that the result is also encrypted. Homomorphic En-
cryption would be the most desirable and principled approach to private
inference, but unfortunately modern schemes are still prohibitively expen-
sive in terms of their computational overhead.

3. Running inside Trusted Execution Environments.

Returning to the abstraction outlined in section [I, a Docker container is
prepared that runs an inference serverﬂ and exposes an OpenAl-compatible
API. Then a network of participants running TEE-enabled hardware spins up
CVMs with this Docker container. Users of the network can establish a TLS
connection with the CVM hosted on a machine of any such participant, and use
it to carry out inference workload, fully utilizing the GPUs on the machine.

According to the TEE abstraction we use described in section [I} after es-
tablishing the TLS connection to the CVM, the user is certain that (a) the
other end of the connection is in fact running inside the TEE, (b) the code that
handles the connection is in fact the VLLM docker container, and nothing else.
Since the TLS connection is encrypted, as long as the Docker container itself
does not contain any logic that leaks the prompts and completions, the user can
be certain that all their data is visible only to them, and neither the owner of
the machine nor the developer of the Docker container can see their data.

3 Verifiable Inference

In addition to the ability to hide the data coming in and out of the inference
server, it is also desirable to be certain that the completions are in fact coming
from a machine learning model, and from the model the user expects to be used.
For example, if the inference provider claims that the completions are done with
DeepSeek R1 ([3]), users want to be certain that they were not done instead
with a smaller model.

A way to achieve this is to extend the API from section 2] with the following:

e load model(path). Loads a model from a local path for inference, and
computes its hash modelH. The completion API uses the model loaded
with load_model.

e The completion API is extended including model H with each completion.

In this way, the user can compare the model H returned with each completion
to the hash of the model they expected to be used. Since the user is using a
TLS connection for which they are certain that the other side of the connection
is handled by this particular Docker container running inside the TEE, they
can be certain that the owner of the hardware cannot tamper with the model H
returned with the completion.

L An implementation of such a Docker container using VLLM can be found here https:
//github.com/nearai/private-ml-sdk
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4 Decentralized Encrypted Models

Say that a particular entity, Charlie, spent considerable resources to build a
new model. The process comprised preparing the dataset, writing software for
the training loop, and actually running the training run. The output is the set
of weights that Charlie has locally. She now wants the model to be available
on a decentralized network—in other words, she wants to ensure that anyone
can use the model without depending on Charlie as the single point of failure.
In section [7] we will also discuss how to remove Charlie as the single point of
failure during training and data preparation.

Naturally, Charlie can just publish the weights. Although this fully solves
the problem of Charlie being the single point of failure, it also prevents Charlie
from being able to monetize the model. Instead, we want such a construction
in which no one but Charlie ever sees the weights, but anyone can get a usable
deployment of the model without involving Charlie, and in such a way that
Charlie cannot prevent it from happening.

With TEEs, Charlie can achieve this by encrypting the model, and creating
a special Docker container that will run inside the CVMs such that the model
can only be decrypted inside that Docker container.

Specifically, Charlie first creates a key pair (sk, pk) and encrypts the model
with pk. She then prepares a Docker container that is a fork of the container
described in section [3] with the following modifications to the API:

e set_sk(sk). The container stores sk in-memory, but sk is not baked into
the Docker container itself, lest it could be extracted by anyone inspecting
it. Instead, the sk needs to be supplied to the virtual machine after it is
launched. set_sk is the way to supply it. Initially, only Charlie knows the
sk, and she seeds the network by calling set_sk on one of the instances.

e request_sk(host, port). An instance of the virtual machine that does
not yet have sk can request it from another instance that does. For that,
the owner of the former establishes the TLS connection with the latter
and calls this method. In other words, the request_sk is called on the
machine that already has sk, and the arguments are the host and port of
the machine that wants to obtain the sk. The handler of the request_sk
establishes the TLS connection with the address provided, and calls set_sk
with the sk. Note that due to guarantees of the abstraction presented in
section [T} the machine establishing the connection can be certain that the
code that handles the set_sk method is running the very same Docker
container as the caller, inside the TEE.

e load model(path). Loads an encrypted model from a local file, and de-
crypts it with the sk. The decrypted weights can now be used for inference,
but never escape the TEE.

The construction above ensures that (a) any participant of the network can
fetch sk from any other participant of the network that already has it, and (b)



neither sk nor the model weights are ever seen outside the TEE by anyone but
Charlie.

This in itself does not solve the problem of Charlie monetizing the model.
We cover one approach that can introduce monetization on top of such a closed-
weight decentralized distribution in section [6]

5 Verifiable Encrypted-Weights Models

Models such as LLaMa ([4]) are often referred to as “open-source,” even though
no source code used to train them, nor to prepare their datasets, is actually
open. The only “open” part of these models is the model weights. In some
circles such models are referred to as “open-weight” models, to emphasize the
fact that only the weights, and not the source code, are open. “Open-source”
then would be a model for which all the code used to train it, and to prepare
the dataset on which it is trained, are open. OLMo, by the Allen Institute for
Artificial Intelligence ([B]), is an example of a truly open-source model. However,
even in the case of OLMo, there is no way to verify that the code published is
what was used to generate the weights provided, without incurring a cost equal
to the cost of the original OLMo training run.

After LLaMa published their first model, many open-source efforts emerged
to fine-tune, or do other forms of post-training, on top of the weights. However,
any effort that wanted to make progress at the pre-training step, such as Mistral,
had to fully re-implement the training loop, since the training loop of LLaMa is
not open source. If it were open source, the progress on pre-training naturally
would have been much faster.

Consider an open-weight model with open source code. If one were certain
that the source code published was in fact what was used to generate the model,
then they would be able to verify whether there were any attempts to introduce
biases or back doors into the model.

Verifying that the published weights are the result of a particular computa-
tion is possible if the computation itself was carried out inside of the TEEs. We
will expand on the idea from section

In this section, we consider a simplified scenario in which the entire training
pipeline (data preparation, pre-training, and post-training) are executed in one
go on a single machine. But this construction generalizes to practical approaches
in which those stages are executed separately, and on bigger clusters.

For the simplified scenario, the Docker container from section [4] is extended
in the following way. Charlie first chooses the raw data on which she plans to
train her model, for example a subset of Common Crawl ([6]), and/or a dump
of public GitHub repositories. She then computes the hash of the raw data
rawH, which she bakes into the Docker container. The API of the Docker is
then extended with:

e load_data(path). Loads data from a local file, and verifies its hash is
rawH.



e train and encrypt(pk). Trains the model from the raw data. Fails if
the data was not previously loaded with load_data. Computes the hash
of the resulting model modelH. FEncrypts the model with pk and saves
the encrypted weights on disk. The encrypted model is available outside
of the TEE.

e load encrypted.-model(path, seed host, seed_port). Loads a previ-
ously trained encrypted model from a local file, decrypts it with sk. Then
establishes a TLS connection to the seed_host:seed port, and calls to
get_model h. Ensures that the loaded model hash matches provided. Lo-
cally sets model H to be able to seed it via get_model_h to other partici-
pants.

e get_model h(). Returns modelH.

For the original training run, Charlie (the entity training the model) prepares
all the data, computes its hash, and prepares the Docker container with the data
hash baked in. She then calls to load_data. The load data would not succeed
if the loaded data does not hash to rawH.

Charlie then calls to train_and_encrypt. Once the training commences, the
encrypted model is on Charlie’s disk. She can decrypt and inspect it, but no
one else can. Charlie publishes the encrypted model and the host and port of
her machine. Now other participants can fetch sk and modelH from Charlie’s
machine or other participants who have already fetched it.

Now, say Alice wants to use the model, but she wants to be certain that
the model she uses is in fact the model trained by the logic in the Docker
container published by Charlie, on the data that Charlie claims it was trained
on. Alice downloads the raw data, computes its hash, and ensures it is equal
to rawH. She launches her Docker container inside the TEE. Her instance
does not yet have either sk or modelH in it. She connects to some other
participant, Bob, who already has those on their instance. Via request_sk
and load_encrypted model, she fetches both from Bob’s instance of the virtual
machine into hers.

After a successful call to load_encrypted model, Alice can be certain that
the model loaded is in fact trained via the code and using the data published
by Charlie. This follows by induction. For modelH there are only two ways
Bob could have acquired them: either they fetched them from yet another
participant, David, or Bob ran train_and encrypt (i.e. Bob is Charlie). Since
there is no other way to obtain model H, it must have been obtained initially
via a call to train_and_encrypt. This guarantees that the model was, in fact,
trained using the code provided. In turn, train_and_encrypt would have failed
if it had not been preceded by a successful call to load_data, which in turn
would fail if the data loaded did not hash to rawH. This guarantees that the
model was trained on the raw data provided by Charlie.

This allows the creation of open-source, encrypted-weights decentralized
models, such that anyone can run the model locally and be certain that the



model is created in the way the creators claim, while preventing anyone from
seeing the weights.

This approach naturally extends to open-source open-weights models with
the same guarantees. For that, it is sufficient to remove the logic that encrypts
the model but retain the logic that computes and exposes h.

6 Monetizable Deployments

In section [f| we discussed how someone could publish an open-source encrypted-
weights model. The motivation was that if the model is open-weights, there is
no way to track and monetize the usage of the model. With the distribution
mechanism explained in section [d] we can now address this problem.

Specifically, we want the following construction. One entity (Charlie) has
created a model they want to host in a decentralized fashion, but they want to
be paid whenever the model is used. Another entity (Bob) wants to provide the
hardware to host the model, and they also want some payment per invocation
of the model in order to recuperate the cost of the hardware. Finally, a third
entity (Alice) wants to use the model.

Any two of those entities can coincide. The creator of the model can also
be its host (i.e. Charlie and Bob can be the same entity); while the user of the
model must also be able to choose to host the model on their own (i.e. Bob
and Alice can be the same entity). Moreover, it is required that the user of the
model is able to host it in an environment completely isolated from the Internet.

2. Request inference via TLS. Attach //
payment channel confirmation (
Open payment Decrypted
L channels model weights

Alice ‘

(Vsen) 3. Reply with inference output via TLS. CVM
Attach payment channel receipt of how \

many “tokens” were used , .
\ Bob’s Host Machine

1. Set up payment channel by
depositing money

Charlie & Bob are getting
’ paid on channel closing

Payment Smart Contract ’

Charlie
(Model Developer)

Figure 1: Private inference monetization flow

We propose the following model: the code in the Docker container that is
used to distribute and host the model (and possibly was used to train it) has
the following logic to perform inference:

1. Charlie deploys a smart contract for the model that allows Bob to register
themselves as a model provider. Charlie configures the cost of using the



model, and Bob configures the extra cost of using it via their deployment.

2. Before an inference session can begin, a random number (challenge) is
generated inside the TEE and is given to Alice.

3. Alice uses the challenge to open a uni-directional payment channel with
Bob and Charlie.

4. Alice provides a light client proof of the transaction that opened the pay-
ment channel to the code running inside the TEE.

5. Now whenever Alice wants to do inference, she sends a payment via the
payment channel that covers the cost specified by Charlie and Bob per
some number of tokens.

For the model above, the Docker container from section [f] is extended with

e get_challenge(). Generates a random challenge locally, remembers it,
and returns.

e establish payment_channel (tx, light_client_proof).
The arguments are a transaction on NEAR that establishes the payment
channel with the challenge provided, and a light client proof of the trans-
action inclusion. The challenge ensures that the same payment channel is
not reused with multiple instances of the virtual machine.

e request_channel closure(). Returns a signed approval to close the pay-
ment channel that can be submitted to NEAR. Locally removes all the
information about the payment channel, i.e. no completions can be done
until another payment channel is established.

The contract with which the payment channel must be established is baked
into the Docker container by Charlie.

Furthermore, the completion endpoint only works if the payment channel was
previously opened and if it is not saturated yet. Each call to the completion
API charges the payment channel.

The actual payment to Bob and Charlie happens when Alice closes the pay-
ment channel. The exact protocol of closing it needs to consider several scenar-
ios.

Bob’s hardware crashes after the channel opening. The first scenario
to consider is the following: Alice opens the payment channel, and locks some
amount of NEAR in it. Immediately after the channel opening, Bob’s hardware
intentionally or unintentionally goes down. Thus, there is no way to obtain
a message with channel closure approval from the other side of the payment
channel. Thus, it must either be the case that Alice carries the risk of losing
the money locked in case of hardware failure, or it must be possible to close the
channel by Alice without the approval from the service running inside the TEE.
Bob and Alice are the same entity. The second scenario is Alice hosting
the model herself. She deploys the model inside of her TEE-enabled machine,



opens up the state channel, then disconnects the machine from the internet. She
then carries out multiple completions from the model, saturating the payment
channel, and then, assuming she can close it without the approval of the service
running inside of the TEE, closes the payment channel at the initial state, i.e.
as if she did not spend any money inside of the TEEﬂ This way Alice can use
the model without paying Charlie, which completely defeats the purpose of the
construction.

The two scenarios presented above present a challenge. Without further
engineering, if Alice can close the channel without the approval of the service
running inside of the TEE, even with a challenge period, she can use the model
without paying Charlie. If she cannot, Bob can cause Alice to lose her money
without providing the service to her.

This problem can be solved in the following way: when a payment channel
is open, both Alice and Bob lock the same amount of money. In the happy case
Alice uses the model, pays for it over the payment channel, then requests the ap-
proval to close the channel, obtains it, and closes without involving Bob. Bob’s
locked money gets returned to him on closure. In the unhappy case she initiates
the channel closure without the approval, which gives Bob time to challenge
it. To challenge the closure, Bob uses an endpoint in the service running inside
the TEE that receives the light client proof of the Alice’s closure request, and
then returns a transaction to be submitted to NEAR with the closure approval.
The channel is then closed, Alice gets reimbursed the remainder of her payment
channel, and Bob gets fully reimbursed. If Bob fails to respond to the closure
request, Alice gets fully reimbursed, and Bob’s locked money are fully sent to
Charlie. This way even if Alice used up the whole payment channel, Charlie
gets paid for each completion.

6.1 Cloning VMs to reuse payment channels

The solution makes an assumption that there is no way to force the service
running inside the TEE to provide an approval to close the channel at a non-
final state. While it is generally impossible to tamper with the computation
that happens inside of the TEE, for obtaining an approval for an earlier state of
the state channel one does not need to tamper with the execution, it is sufficient
to be able to clone or snapshot the virtual machine running inside of the TEE.
Consider the following scenario: Alice opens up the state channel with Bob’s
machine; then Bob snapshots the state of the memory. It is encrypted, but
Bob does not need to know what is in the memory, he only needs to be able
to recover in to exact same state. Alice then proceeds to fully saturate the
payment channel by using the model; Bob then resets the memory to the state
that was snapshotted. The state of the TEE is now the same as it was right
after state channel opening. Alice can either use up the payment channel again,
or close it and get her money back.

2We consider the ability to use the model offline after opening the state channel a require-
ment. However, even if this requirement is lifted, Alice can still execute the attack presented,
though it becomes more involved.

10



At least Intel TDX has a solution for this problem: TDX has a concept of
non-resettable counters, meaning that the code running inside of the TDX has
access to a counter that the owner of the hardware cannot rewind. With such a
counter the payment channel can be engineered to detect attempts to clone or
roll-back the state of the virtual machine.

6.2 Faster payment channel closures

There is a problem with the above approach to enabling Alice to close the
payment channel without obtaining approval from the service running inside
the TEE. Both Alice and Bob can grieve each other by forcing the challenge
(Alice by initiating it; Bob by shutting down his machine).

With the mechanism described in section |8} there is a third possible option
for closing the channel, besides having an explicit approval, or initiating a long
challenge period. Specifically, if Bob is part of a Proof of Response network (see
section , the payment channel can be closed if Alice can prove that Bob was
disconnected. This way Alice can repeatedly request the approval to close the
payment channel via the Proof of Response network, and eventually either get
the response, or end up disconnecting Bob from the network, which enables her
to immediately close the payment channel (and use Bob’s locked funds to pay
Charlie).

7 Community-Owned Models

Previous sections explored decentralized distribution and monetization of a
model. In those sections, the model was trained by a single entity, which in
the modern world is usually the case. However, this requires a single entity to
be able to gather sufficient resources to pull off training a model that will be
competitive enough for people to want to pay for it.

For state-of-the-art models, this often means tens of millions of dollars per
run. In this section, we explore a modification to the mechanism that allows a
set of participants to pool funds together, train the model, and share the profits
in a decentralized manner.

Suppose that Charlie and David want to pool resources together to train a
model and then to share the profits from its deployment. As section [f] shows,
once they have the model, they will be able to deploy it in such a way that it
can be monetized.

The challenge here is that if Charlie and David do not trust each other,
then if either of them has access to the weights, that entity would be able to
encrypt and deploy those weights so that only they get paid for the inference.
Therefore, ideally the model must be trained from the beginning in such a way
that even David and Charlie never see the weights, and the only way to use the
weights is to deploy it as presented in section [6] with both Charlie and David
as beneficiaries.

11



We will build upon the construction from section |5} The Docker container is
prepared to have logic to train the model, and then to deploy it in a decentral-
ized fashion. The difference with this construction is that the entity training
the model no longer supplies the key to encrypt the model. Instead, the key
pair (pk, sk) is generated inside of the TEE, before the training. Charlie and
David deploy a special contract that tracks the ownership structure. When
training starts, either Charlie or David provides the light client proof of the
contract, and then training commences. During training, the weights inside the
TEE are not encrypted, but once training is completed, or during the interme-
diate checkpoints, the model is always encrypted before hitting the disk. At no
point during or after training are the unencrypted weights seen by any entity,
including David and Charlie.

Once training commences, the model can be distributed in a decentralized
fashion via the protocol explained in section [4] to other machines running ex-
actly the same Docker container. When the model decryption key sk is shared
between two machines, they also share the hash of the model, as well as the
smart contract tracking the ownership structure.

For monetization in this case, whenever a payment channel is closed and
payment is made to the model owner, it is now made to the smart contract that
tracks the ownership structure, and the smart contract distributes the funds to
all the contributors.

7.1 Training Process

Training a model requires a very large set of machines. We envision the full
solution to work in the following way:

1. David and Charlie deploy a smart contract and deposit money to cover
the cost of training. They further configure the smart contract to indicate
how much they are willing to pay per epoch per machine and the minimum
configuration of machines that can participate.

2. A participant who has hardware, Bob, deploys the Docker container pre-
pared by David and Charlie into a TEE on their machine. The logic inside
the TEE verifies the machine configuration and prepares a quote to sub-
mit to the smart contract. Bob registers on the smart contract with their
host and port, and joins the training run.

3. Once per epoch, the training logic pings the smart contract with a proof
of being run inside the TEE via the Docker container provided by Charlie
and David, and Bob gets paid for one epoch of work.

4. The actual training loop implements DiL.oCo or a similar mechanism that
enables training a large model efficiently on a geographically distributed
set of machines.

Note that it is important that the various participants in the network can
communicate with one another. Training requires accumulating gradients, and

12



if Bob is offline after computing their epoch of work, they are not useful to
the overall effort. We propose to use Proof of Response (see section to
accumulate gradients, thus ensuring that if one or more participants is offline,
that can be proven on the blockchain, and the participant(s) can be removed
from the training run.

8 Proof of Response

100ms, 5yN

Request [encrypted] from
5,via3=»1-2-5

2

User

30ms, 2yN Either get response within

stated time or receive a
proof of a “broken” edge

Figure 2: User interacting with a Proof of Response network has guarantees
either to receive response or proof of a broken edge in the network

This section briefly explains a mechanism called Proof of Response, which
comprises a network of machines such that if one participant, Alice, wants to
request something from another participant, Bob, then either Alice will receive
the response from Bob, or at least one edge on the path from Alice to Bob will
be severed. Since Alice can repeatedly try to request the information, ultimately
Alice will either receive the response or will disconnect Bob from the network,
and have a proof that Bob is no longer part of the network.

The full explanation of the mechanism can be found in “Proof of Response”
([); we will include only a high-level discussion of the idea in this document.

For each edge in the network, the two nodes that are incident to the edge
have a state channel open. Alice chooses a path via the network between herself
and Bob, and sends the message to the first node on the path. Then for any two
consecutive nodes P and ) on the path, as the message passes between them,
the following must happen:

1. Within some predefined time §, @ returns the response to P;

2. Within §, @ sends to P a proof that one of the edges on the path is no
longer present;

3. Neither has happened, and @ streamed to P a penalty payment propor-
tional to time passed beyond J.

13



This property is maintained by induction. If @) then routes a message to R,
then of R has responded to @ in time with either of the two responses (actual
response, or a proof of broken edge), @ routes it back to P. If R streams
payment to @ for delay, @) streams it back to P. If R does neither, ) can
choose to wait for some time and pay to P out of pocket, but ultimately they
break the edge with R and send the proof to P.

9 Decentralized Confidential Machine Learning
Cloud

With all the building blocks described in the previous sections, the full system
comprises a network of machines, each with a TEE-enabled processor and GPUs.
The nodes are connected to a network with a topology tracked on the blockchain
through Proof of Response (see Section .

There is a smart contract that tracks commitments of such nodes to run
particular machine learning workloads on their hardware. The smart contract
exposes the following endpoint:

commit (docker_hash, end time, host, port)

The end-point is payable, and locks the attached NEAR in the contract until
the endtime.

That states that the operator of the node at host:port commits to running
the Docker container with docker_hash on their machine enabled with TEE.

Generally, it is unreasonable to bake a model into a Docker container, but
the Docker container can be designed in such a way that if for a particular hash
h, model weights that hash to h are not provided when it starts, it immediately
shuts down — thus ensuring that if a user can interface with an instance of such
Docker container, it has access to the weights.

All the API end-points of the Docker containers are designed so that each
response comes with a proof that the response was generated inside the TEE,
and that the TEE was, in fact, running the Docker container with docker_hash.

While Proof of Response itself only ensures that some response signed by
the service provider was received, it does not provide validation of the response
itself. Thus, the contract further has two extra end-points:

show_offline(host, port)

That in turn pings the Proof of Response contract to confirm that host :port
is offline, and if so, starts gradually slashing their stake, and

show_invalid_response(host, port, request, response)

This verifies that the response is signed by the service provider, but does not
have a valid proof of having been executed inside the TEE by code running in
the correct Docker. If the verification fails, a percentage of the stake is slashed.

Thus, if the service provider has committed to running a particular Docker
image for a particular duration, they either do run it and are online, or they get
slashed.
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Such a decentralized machine learning cloud can be used for all the use cases
described above. In particular:

e A node can commit to serving a VLLM Docker with a particular model
in it for a particular duration. Users can expect that they can either get
reliable confidential inference at the end-point specified, or that the node
will get slashed. Note that while the node can at best violate liveness, and
be slashed for that violation, it cannot violate confidentiality.

e A user can enter into an agreement with a particular node to host their own
Docker container. The node operator ensures that the Docker container
is properly designed (i.e. that all the API end-points do in fact annotate
their responses with the correct proofs), and commits to running it.

There are also cases where long-term, stateful services are needed, such as
a database with user chats. If such a service is running inside TEE, no one
will have access to the state stored inside, so there is a need for a backup and
upgrade process that is just as secure.

A special service that offers backup of data stored inside TEE nodes should
be registered with such Dockers that allows them to connect, verify that they
are also running inside TEE, and back up the data from the running machine
and store it in decentralized storage.

When an upgrade to a new Docker is needed, the smart contract offers a
way to vote on a new docker_hash, which allows the new Docker container to
load data from the backup node through an authentication process.

Generally, any scenario in which one entity needs an Al workload to run in
a reliable and confidential manner, and another entity has compute to run it
on, is supported by the construction outlined above.

10 Results

Table [L0] presents results that compare a number of deep learning models run-
ning inside Trusted Execution Environment and bare metal.

Total Token Throughput (tokens/s) Requests Throughput (req/s)

Model CVM Bare metal Overhead CVM Bare metal Overhead
Mistral-24B 2382.29 2476.27 3.79% 3.57 3.71 3.77%
Qwen-32B 1832.29 1861.78 1.58% 2.61 2.65 1.5%
DeepSeek-R1-70B  1250.06 1421.99 12.09% 1.09 1.24 12.09%

Table 1: Performance comparison of popular models in TEE vs bare metal
environments

We evaluated the impact of TEE on the inference performance of three state-
of-the-art open source models: DeepSeek-R1-70B, Mistral-24B, and Qwen-32B.
The comparison shows the models running on the same hardware and the same
workload in two setups: Bare metal is the native setup and CVM is running
inside a Confidential VM.
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All experiments used INTEL(R) XEON(R) PLATINUM 8568Y+ and
NVIDIA H200.

The measurements were done on both Total Token Throughput, or the
total number of tokens that can be produced by the model, and Requests
Throughput, the number of parallel requests the system can handle.

Figure [3| also showcases comparison for Time To First Token (TTFT),
Time per Output Token (TPOT) and Inter-token Latency (ITL).

Throughput (req/s) Output Token Throughput (tok/s) Total Token Throughput (tok/s)
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Figure 3: Plotting comparison of popular models in TEE vs bare metal envi-
ronments

The penalty depends on the size and architecture of the model, but does not

exceed 15%. We expect the penalty to be even smaller on future generations of
GPUs.

11 Conclusion

With the anticipated dominance of artificial intelligence, the ability to use the
models and tools built upon them in a verifiable and confidential manner will
be crucially important. In this document, we explored applications of Trusted
Execution Environments to solving such problems. We further present a con-
struction of a machine learning cloud that enables running arbitrary workloads
in a reliable and confidential manner and showcase performance of the system.
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